Spreadsheet-Implementierung der saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel anzupassen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung auf den folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden, was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all das angesehen werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der mittlere gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsertNameCreatequot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für den aktuellen Zeitraum auf die beiden vorherigen Beobachtungen und die beiden vorherigen Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)). 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind ungefähr plus-oder-minus 2SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null ungefähr plus - Oder-minus 26 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend dargestellt wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für a-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend anstatt den jüngsten Aufwärtstrend wider. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, diese im Allgemeinen nach analytischen Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber die Unsicherheit in den saisonalen Indizes ist eine andere Angelegenheit.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Zeiträume wünschen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf der Kalkulationstabelle erstellen, um eine 2-Schritt-Voraus-Prognose für jeden Zeitraum zu berechnen Durch Booten der Ein-Schritt-Voraus-Prognose). Berechnen Sie dann die RMSE der 2-Schritt-Voraus-Prognosefehler und verwenden Sie diese als Basis für ein Konfidenzintervall von 2 Schritten. Hinzufügen eines Trends oder einer gleitenden Durchschnittszeile zu einem Diagramm Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Luftblase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem festen Raum, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie zeigt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgenden gleitenden Durchschnitt Trendlinie zeigt ein Muster in der Zahl der Häuser verkauft über einen Zeitraum von 26 Wochen. Einfache Moving Averages machen Trends Stand Out Moving Averages (MA) sind eine der beliebtesten und häufig verwendeten technischen Indikatoren. Der gleitende Durchschnitt ist einfach zu berechnen und, sobald er in einem Diagramm dargestellt ist, ein leistungsstarkes visuelles Trend-Spotting-Tool. Sie werden oft über drei Arten von gleitenden Durchschnitt zu hören: einfach. Exponentiell und linear. Der beste Ort zum Start ist durch das Verständnis der grundlegendsten: die einfache gleitende Durchschnitt (SMA). Werfen wir einen Blick auf diese Indikator und wie sie helfen können Händler folgen Trends in Richtung größerer Gewinne. (Für mehr über gleitende Durchschnitte sehen Sie unseren Forex Walkthrough.) Trendlinien Es kann kein vollständiges Verständnis der bewegten Durchschnitte ohne ein Verständnis der Tendenzen geben. Ein Trend ist einfach ein Preis, der sich in einer bestimmten Richtung fortsetzt. Es gibt nur drei echte Trends, denen ein Wertpapier folgen kann: Ein Aufwärtstrend. Oder bullish Trend, bedeutet, dass der Preis höher ist. Ein Abwärtstrend. Oder bärische Tendenz, bedeutet, dass der Preis niedriger ist. Seitwärts gerichtet. Wo sich der Preis seitwärts bewegt. Die wichtige Sache, über Trends zu erinnern ist, dass die Preise nur selten in einer geraden Linie bewegen. Daher werden gleitende Durchschnittslinien verwendet, um einem Händler zu helfen, die Richtung des Trends leichter zu identifizieren. (Für weiterführende Literatur zu diesem Thema, siehe Die Grundlagen der Bollinger-Bands und Moving Average Umschläge: Raffinieren ein beliebtes Trading-Tool.) Moving Average Construction Die Lehrbuch-Definition eines gleitenden Durchschnitt ist ein durchschnittlicher Preis für eine Sicherheit mit einem bestimmten Zeitraum. Nehmen wir den sehr populären 50-Tage gleitenden Durchschnitt als Beispiel. Ein gleitender 50-Tage-Durchschnitt wird berechnet, indem die Schlusskurse für die letzten 50 Tage der Sicherheit gezählt und addiert werden. Das Ergebnis aus der Additionskalkulation wird dann durch die Anzahl der Perioden geteilt, in diesem Fall 50. Um weiterhin den gleitenden Durchschnitt auf einer täglichen Basis zu berechnen, ersetzen Sie die älteste Zahl mit dem letzten Schlusskurs und machen die gleiche Mathematik. Unabhängig davon, wie lange oder kurz eines gleitenden Durchschnitts sind Sie auf der Hand, sind die grundlegenden Berechnungen gleich geblieben. Die Änderung erfolgt in der Anzahl der Schlusskurse, die Sie verwenden. So ist z. B. ein 200-Tage-Gleitender Durchschnitt der Schlusskurs für 200 Tage, zusammengefasst und dann durch 200 geteilt. Sie sehen alle Arten von gleitenden Durchschnitten, von zweitägigen gleitenden Durchschnitten bis zu 250-Tage-gleitenden Durchschnittswerten. Es ist wichtig, sich daran zu erinnern, dass Sie eine bestimmte Anzahl von Schlusskursen haben müssen, um den gleitenden Durchschnitt zu berechnen. Wenn eine Sicherheit nagelneu oder nur einen Monat alt ist, können Sie einen gleitenden Durchschnitt von 50 Tagen nicht durchführen, da Sie nicht über eine ausreichende Anzahl von Datenpunkten verfügen. Auch ist es wichtig zu beachten, dass weve gewählt, um Schlusskurse in den Berechnungen verwenden, aber gleitende Durchschnitte können mit monatlichen Preisen, Wochenpreise, Eröffnungskurse oder sogar Intraday-Preise berechnet werden. Abbildung 1: Ein einfacher gleitender Durchschnitt in Google Inc. Abbildung 1 ist ein Beispiel für einen einfachen gleitenden Durchschnitt auf einem Aktienchart von Google Inc. (Nasdaq: GOOG). Die blaue Linie repräsentiert einen gleitenden 50-Tage-Durchschnitt. Im obigen Beispiel sehen Sie, dass sich der Trend seit Ende 2007 verringert hat. Der Preis für Google-Aktien fiel im Januar 2008 unter den 50-Tage-Gleitenden Durchschnitt und ging weiter nach unten. Wenn der Kurs unter einem gleitenden Durchschnitt liegt, kann er als einfaches Handelssignal verwendet werden. Ein Umzug unter dem gleitenden Durchschnitt (wie oben gezeigt) deutet darauf hin, dass die Bären die Preisaktion kontrollieren und dass sich der Vermögenswert voraussichtlich weiter senken wird. Umgekehrt, ein Kreuz über einem gleitenden Durchschnitt deutet darauf hin, dass die Bullen in der Kontrolle sind und dass der Preis kann immer bereit, einen Schritt höher zu machen. (Lesen Sie mehr in Track-Aktienkurse mit Trendlinien.) Andere Wege zu bewegen Gleitende Durchschnitte Gleitende Durchschnitte werden von vielen Händlern verwendet, um nicht nur einen aktuellen Trend, sondern auch als Ein-und Ausfahrt-Strategie zu identifizieren. Eine der einfachsten Strategien beruht auf der Kreuzung von zwei oder mehr bewegten Durchschnitten. Das Grundsignal wird gegeben, wenn der kurzfristige Mittelwert über oder unter dem längerfristigen gleitenden Durchschnitt liegt. Zwei oder mehr bewegte Durchschnitte erlauben Ihnen, einen längerfristigen Trend zu sehen, verglichen mit einem kürzeren bewegten Durchschnitt, das es auch eine einfache Methode ist, zu bestimmen, ob der Trend an Stärke gewinnt, oder wenn er im Begriff ist, umzukehren. Abbildung 2: Ein langfristiger und kürzerer bewegter Durchschnitt in Google Inc. Abbildung 2 verwendet zwei gleitende Mittelwerte, eine langfristige (50-tägige, die von der MACD gezeigt wird Blaue Linie) und der andere kürzere Term (15-Tage, dargestellt durch die rote Linie). Dies ist das gleiche Google-Diagramm in Abbildung 1 gezeigt, aber mit dem Zusatz der beiden gleitenden Mittelwerte, um den Unterschied zwischen den beiden Längen zu veranschaulichen. Sie bemerken, dass die 50-Tage gleitenden Durchschnitt ist langsamer, um Preisänderungen anzupassen. Weil es mehr Datenpunkte in seiner Berechnung verwendet. Auf der anderen Seite reagiert der 15-tägige gleitende Durchschnitt schnell auf Preisveränderungen, da jeder Wert aufgrund des relativ kurzen Zeithorizonts eine größere Gewichtung bei der Berechnung aufweist. In diesem Fall würden Sie, indem Sie eine Cross-Strategie verwenden, für den 15-Tage-Durchschnitt sehen, um den 50-Tage-Gleitenden Durchschnitt als Einstieg für eine Short-Position zu überqueren. Abbildung 3: Ein Dreimonatiges Das Obenstehende ist ein Drei-Monats-Diagramm von United States Oil (AMEX: USO) mit zwei einfachen gleitenden Durchschnitten. Die rote Linie ist der kürzere, 15 Tage gleitende Durchschnitt, während die blaue Linie den längeren, 50-tägigen gleitenden Durchschnitt darstellt. Die meisten Händler werden das Kreuz des kurzfristigen gleitenden Durchschnitts über dem längerfristigen gleitenden Durchschnitt verwenden, um eine Long-Position einzuleiten und den Beginn eines zinsbullischen Trends zu identifizieren. (Erfahren Sie mehr über die Anwendung dieser Strategie im Handel The MACD Divergence.) Unterstützung wird festgestellt, wenn ein Preis nach unten tendiert. Es gibt einen Punkt, an dem der Verkauf Druck nachlässt und Käufer sind bereit, in Schritt. Mit anderen Worten, eine Etage etabliert ist. Widerstand tritt auf, wenn ein Preis aufwärts tendiert. Es kommt ein Punkt, wenn die Kaufkraft abnimmt und die Verkäufer treten. Das würde eine Obergrenze schaffen. (Weitere Erläuterungen hierzu finden Sie unter Support amp Resistance Basics.) In beiden Fällen kann ein gleitender Durchschnitt in der Lage sein, einen frühen Unterstützungs - oder Widerstandswert zu signalisieren. Wenn zum Beispiel eine Sicherheit in einem etablierten Aufwärtstrend sinkt, dann wäre es nicht überraschend, wenn die Aktie bei einem langfristigen, 200-tägigen gleitenden Durchschnitt gefunden wird. Auf der anderen Seite, wenn der Preis niedriger ist, werden viele Händler für die Aktie beobachten, um den Widerstand von großen gleitenden Durchschnitten (50-Tage, 100-Tage, 200-Tage-SMAs) abzustoßen. (Für mehr über die Unterstützung und Widerstand, um Trends zu identifizieren, lesen Sie Trend-Spotting mit der AccumulationDistribution Linie.) Fazit Moving Averages sind leistungsfähige Werkzeuge. Ein einfacher gleitender Durchschnitt ist einfach zu berechnen, was es erlaubt, ziemlich schnell und einfach eingesetzt zu werden. Eine bewegte Durchschnitte größte Stärke ist seine Fähigkeit, einem Händler zu helfen, einen gegenwärtigen Trend zu identifizieren oder eine mögliche Trendumkehr zu lokalisieren. Bewegungsdurchschnitte können auch ein Maß an Unterstützung oder Widerstand für die Sicherheit identifizieren oder als ein einfaches Eingangs - oder Ausgangssignal wirken. Wie Sie sich entscheiden, gleitende Durchschnitte zu verwenden, liegt ganz bei Ihnen.
No comments:
Post a Comment